

Automata-Based Verification of Temporal Properties on Running Programs

Dimitra Giannakopoulou (RIACS) and Klaus Havelund (Kestrel Technologies)

Automated Software Engineering Group
NASA Ames Research Center, CA, USA
{dimitra, havelund}@email.arc.nasa.gov

Abstract
This paper presents an approach to checking a

running program against Linear Temporal Logic (LTL)
specifications. LTL is a widely used logic for expressing
properties of programs viewed as sets of executions. Our
approach consists of translating LTL formulae to finite-
state automata, which are used as observers of the
program behavior. The translation algorithm we propose
modifies standard LTL to Büchi automata conversion
techniques to generate automata that check finite
program traces. The algorithm has been implemented in
a tool, which has been integrated with the generic JPaX
framework for runtime analysis of Java programs.

1 Introduction

Computer program correctness has, for decades,

concerned industry and been studied in academia. Formal
verification techniques such as theorem proving and
model checking have been developed, that attempt to
mechanize proofs that a program satisfies specifications
expressed in some formal logic. However, such formal
methods still remain to reach a state where they can be
used in practice without considerable manual effort. A
recent research direction is for model checking to be
applied directly to programs written in standard
programming languages such as Java and C [1, 2].

Although we find this work of great interest, we
believe that a light-weight use of formal techniques will
be useful and more practical in the shorter term. By
“light-weight”, we mean a method that is completely
automatic, irrespective of the size of the examined
program. Hence, the main concern is scalability: the
technique should be practically applicable to large
systems consisting of hundreds of thousands of lines of
code.

An example of such a light-weight technique is what is
often referred to as program monitoring. Here, the idea is
to monitor the execution of a program against a formal
specification written in some logic. This kind of
technique is practically feasible since only one trace is
examined, and it is useful since the logic allows stating

more complex properties than is normally possible in
standard testing environments.

In this paper, we describe an effort to develop such a
technique for monitoring program executions against
high-level requirement specifications written in Linear
Temporal Logic (LTL). LTL is used to express properties
in several model-checking environments [3]. Model
checking an LTL property consists of generating a Büchi
automaton for the negation of the property, and
subsequently detecting cycles in the synchronous product
of the model/program to be checked with the automaton.

Büchi automata are finite automata on infinite words.
So the question naturally arises whether Büchi automata
can be used to efficiently monitor finite traces of
executing programs (since, either the program will
terminate, or it will be interrupted at some stage). A
typical way to model check a finite trace with Büchi
automata is to extend the trace by repeating the last state
indefinitely. However, we have found that the
expressiveness of Büchi automata is not really required
for checking finite traces.

The work presented in this paper provides a more
efficient alternative to the use Büchi automata. We have
developed an algorithm, based on standard LTL to Büchi
automata construction techniques, which generates
traditional finite-state automata that can be used to
monitor efficiently LTL formulae on finite program
traces. Our algorithm has been implemented in Trace
analyZer (TaZ), an observer generator tool written in
Java. TaZ has been integrated in Java PathExplorer
(JPaX) – a generic tool for monitoring Java programs [4].
The result is an environment that can automatically check,
on-the-fly, whether the current run of a Java program
conforms to an LTL formula.

The remainder of this paper is organized as follows.
Section 2 introduces LTL semantics on finite executions.
It thus sets the theoretical grounds for Section 3, which
presents our algorithm for generating LTL runtime
observers. In Section 4, we discuss in more detail how
TaZ generates observers based on our algorithm, and how
the observers are used for program monitoring. Section 5
discusses related work, and Section 6 closes the paper
with conclusions.

2 Finite-trace semantics for LTL

An executing program defines a sequence of states; an

infinite execution can be viewed as an LTL interpretation,
which assigns to each moment in time the set of
propositions that are true at the particular program state.
Model checking [5] detects infinite executions of finite-
state systems through cycles in their state graphs; such
executions define interpretations on which the truth-value
of LTL properties is determined. Runtime verification, on
the other hand, does not store the entire state-space of a
program. Rather, it only observes finite program
executions. For runtime verification, we therefore need to
interpret LTL formulae on finite program traces.

We base our finite trace semantics on the following.
Every LTL formula may contain a safety part or an
eventuality part (or both). The safety/eventuality part
requires that something bad-never/good-eventually
happens in an execution. We modify the
safety/eventuality requirement to mean that, in the portion
of the execution that we have observed, nothing
bad/something good happens. To reflect this, we modify
the standard semantics of the temporal operators of LTL
accordingly [6]. In what follows, we describe the syntax
and finite-trace semantics of LTL as used in this paper.

The set of well-formed LTL formulae is constructed
from a set of atomic propositions (℘), the standard
Boolean operators (not “!”, and “∧ ”, or “∨ ”, implies
“→”), and the temporal operator until “U”. The following
abbreviations are typically used: <>φ (eventually) for
TRUEUφ, and []φ (always) for !<>!φ. Finally, we also use
the temporal operator V which is defined as the dual of U,
that is: φVψ = !(!φU !ψ).

Note that we are only interested in the next-free
variant of LTL, namely LTL-X. This is typical in
verification, because LTL-X is guaranteed to be
insensitive to stuttering [5], which avoids the notion of an
absolute next state. In the rest of this paper, the next-free
variant of LTL is implied whenever we refer to LTL.

An interpretation of an LTL formula is a finite word
w= x0…xn over 2℘ (sets of propositions), where at some
time point 0≤ i ≤ n, a proposition p is true iff (if and only
if) p∈ xi. We write wi for the suffix of w starting at i. The
semantics of LTL is defined as follows:

PROPOSITIONS: For φ∈℘ , w |= φ iff φ∈ x0.
BOOLEAN OP: Standard semantics [7].
TEMPORAL OP: w |= φUψ iff there exists 0≤ i ≤ n such that

wi |= ψ and for all 0 ≤ j < i , wj |= φ.

So the temporal operator U requires that ψ becomes true
in the portion of the execution that has been observed,
and that, of course, φ remains true in the interval that
precedes the occurrence of ψ.

3 Algorithm

The goal is to construct a finite-state automaton that

accepts exactly those finite words that satisfy a given
LTL formula φ. Our algorithm is based on an efficient
tableau-based LTL to Büchi automata translation
presented in [7]. It generates an automaton for an LTL
formula in two stages. First, it constructs a graph that
represents the final automaton but without designated
accepting states. Second, it selects accepting states. We
remind the reader that the automata we generate are
standard finite automata on finite words; as such, they
accept finite traces that can lead them to an accepting
state [8].

Construction: The first stage of our algorithm proceeds
in essence in the same way as the corresponding stage of
[7]. Given that, and due to space limitations, we will only
briefly summarize this part of our construction. For more
details, the reader is referred to [6, 7].

We deal with LTL formulae in negation normal form
(all negations are pushed inside until they precede only
propositional variables). The construction of the
automaton is based on expanding a graph node. A graph
node is a data structure that contains the following fields:

NAME: a unique name for the node.
INCOMING: the set of nodes that lead to this node, i.e.,

which have incoming edges to this node.
NEW: the set of LTL formulae that must hold on the

current state but have not yet been processed.
OLD: the set of LTL formulae that have already been

processed. Each formula in NEW that gets processed is
transferred to OLD.

NEXT: the set of LTL formulae that must hold at all
immediate successors of this node.

Field NEW in a graph node contains all the formulae that
the node must make true. The idea of the expansion
algorithm is to move formulae from NEW to OLD one by
one by processing them in the following way. Each
formula is broken down until we get to the literals
(propositions or negated propositions) that must hold to
make it true. For example, φ∧ ψ is broken down by adding
both φ and ψ to the NEW field of the node. If there are
alternative ways to make a formula true the node is split
in two nodes, each of these nodes representing one way
of making the formula true. For example, to make φ∨ ψ
true, we split the node into one node that makes φ true
and another that makes ψ true. To satisfy temporal
operator formulae, a node needs to also push obligations
to its immediate successors. These obligations are stored
in field NEXT, and are based on the following identities:
φUψ ≡ ψ ∨ (φ ∧ X (φUψ)), and φVψ ≡ ψ ∧ (φ ∨ X (φVψ)).

When a node has been fully processed (i.e., the NEW
field has become empty), the node represents a state of
the automaton. Before being added to the automaton, it
gets compared with all previously computed nodes/states.
If the automaton already contains an equivalent node, the
two nodes get merged. The notion of equivalence in our
context is different from the one in [7].

Accepting states: As mentioned in [7], any path within
the graph generated as discussed above is guaranteed, by
construction, to satisfy all the safety conditions of the
formula to which it corresponds. However, accepting
conditions need to be imposed to make sure that
eventualities are also satisfied. More precisely, we need to
make sure that whenever some node contains φUψ, some
successor node will contain ψ.

In our finite-trace semantics, we must ensure that any
finite execution of the automaton that concludes in an
accepting state (called an accepting execution) satisfies
all the required eventualities. The eventualities that
remain to be satisfied after any finite execution of the
automata we generate, are reflected by the formulae
contained in the NEXT field of the last state of this
execution. This means that, unless there exist U formulae
in the next field of the state, this state has satisfied its
potential eventuality requirements.

Therefore, our algorithm designates as accepting those
states that do not contain U formulae in their NEXT fields.
The initial state is non-accepting, which reflects the
assumption that traces contain at least one (initial) state.

N2

N4

N1-3

ϕ

! ϕ

Fig. 1: Collapsing nodes with different OLD fields

Equivalent nodes: It can be seen from our construction
that field OLD is used by our algorithm only to generate
the labels of the automaton, but plays no role in the
identification of accepting conditions. Therefore, two
nodes are equivalent in our context when they have the
same NEXT fields. Our algorithm typically generates
fewer states than [7], since in [7] nodes can only be
merged if both their NEXT and OLD fields are the same.
This, however, does not make the OLD field redundant in
our case; the literals contained in it are needed in order to
determine labels of the automata edges. Therefore, our
construction only stores literals (rather than any processed
formula) in field OLD.

One needs to be careful during the process of
collapsing equivalent nodes. If two nodes are collapsed,
the resulting node must record the information of each

component’s INCOMING field and its associated OLD field.
This is for it to record that it is obtained from alternative
parent nodes by potentially different sets of literals. In the
simple case where the literals in the OLD fields are the
same, the OLD field of the resulting node is the same as
the corresponding field of either of its components, and
its INCOMING field is obtained as the union of their
corresponding INCOMING fields.

For example, assume that a node N1 with OLD={ϕ}
(where ϕ is a proposition) and INCOMING={N2}, is
collapsed with node N3 with OLD={!ϕ}, and
INCOMING={N4). Let us call the resulting node N1-3. This
information is kept appropriately in node N1-3, so that in
the generated automaton, it will look as in Fig. 1.

Optimizations: Since the automata that our algorithm
generates are finite automata on finite words, standard
algorithms can be used to make these automata
deterministic and minimal (details in [6]). For example,
the deterministic and minimal automaton corresponding
to formula [](a→<>b) is illustrated in Fig. 2.

0

1

2

 a∧ !b

(a∧ b)∨ !a

!b

 (a∧ b)∨ !a

 a∧ !b b

Fig. 2: Automaton corresponding to [](a→<>b)

4 Program monitoring

We have developed a tool, the trace analyser (TaZ),

which receives as input an LTL formula, and generates an
observer for traces of running programs, using the
algorithm presented. TaZ has been integrated with the
internally developed runtime-monitoring tool Java
PathExplorer (JPaX) [4].

JPaX: JPaX is a general environment for monitoring the
execution of Java programs. It consists of an
instrumentation module, and an observer module.

Instrumentation is based on a script given by the user,
which specifies the program variables to be monitored.
The automated instrumentation inserts event-transmitting
code after all updates to these variables. The updates are
collected in an image state separate from the executing
program state. The instrumentation script also defines a
collection of Boolean valued proposition variables and an
association between these and predicates over the
observed program variables. When an image state-change

occurs, the propositional variables are re-evaluated, and
what is sent to the observer is changes in these
propositional variables. The Java byte code
instrumentation is performed using the powerful Jtrek
Java byte code-engineering tool from Compaq [9]. Jtrek
makes it possible to easily read Java class files (byte code
files), and traverse them as abstract syntax trees while
examining their contents, and inserting new code.

The instrumented program, when run, emits
relevant events to the observer. The observer may run on
a different computer, in which case the events are
transmitted over a socket.

TaZ observers: An observer in TaZ is a data structure
that consists of the following fields:

• The automaton for the formula to be checked.
• The current states of the automaton. These may be

multiple if the automaton is non-deterministic.
Initially, the automaton is in its initial state.

• A hash-table that records the values, at the program
state that is being verified, of the propositions
involved in the formula.

The observer class implements the following interface,
required by JPaX:

interface LTL{

void init(STATEINIT init);
void next(STATECHANGE change);
void end();}

Method init is called by JPaX to pass the observer the
values of propositions at the initial program state. Then,
each time the proposition values change, JPaX calls the
next method of the observer to pass it information about
the state change. This is provided as a list of propositions
that have changed value since the previous state.

Every time next is called, the observer performs the
following steps. It updates the values of propositions in
its local hash-table of the program state. It then checks
which transitions rooting at its current states are enabled.
To do this, it checks if the state of the program is
compatible with the literals labelling these transitions. If,
for example, !a labels a transition trans, and a is false in
the current program state, then trans is enabled. The
current states of the automaton are then updated to be the
set of states that are reached through enabled transitions.
If this set is empty, it means that the automaton cannot
make a step, which reflects the fact that the property is
violated by the specific trace of the program. This
information is reported, which concludes the observer’s
job.

When the program is stopped, and if the observer is
still running (i.e. it did not yet detect a violation or the
fact that the property is satisfied), the program calls the
end method of the observer. At this stage, the observer

checks its set of current states. If there exists/does not
exist at least one accepting state within this set, then the
observer reports the fact that the property is
satisfied/violated by the specific program trace,
respectively.

Stuttering: As mentioned, the LTL-X variant of LTL is
insensitive to stuttering. Therefore, the observer only
needs to be notified whenever propositions in its alphabet
change value. This can be implemented by the observer
initially informing JPaX about the particular state
attributes it is interested in observing.

Experimental results: We have used TaZ to generate
automata for large formulae (more than 20 operators,
mostly U, V and \/s, which cause nodes to split), and it
produces results instantaneously. Checking program
traces with the observers we generate is linear in the
program trace, thus also very efficient.

We have applied our tools to artificially generated
traces for early testing purposes. For properties that
require checking the entire trace before a result is
produced (e.g. <>[]φ), it takes our approach less than 5
minutes on a Pentium 4, 1.3 GHz processor, to process a
trace 100 Million state-changes long. Currently, our tools
do not implement the algorithms for making the automata
generated deterministic and minimal; we expect that when
these algorithms are incorporated, performance will be
further improved.

Finally, we are also considering various ways of
minimizing the effort required to compute enabled
transitions [6].

5 Related Work

Program monitoring against specifications expressed

in various logics has been investigated by several
researchers. In [10], for example, the authors describe an
algorithm for generating test oracles from specifications
written in GIL, a graphical interval logic. Similarly to our
approach, the oracles are based on automata. The
generation is performed in two phases. During the first
phase, a hierarchical non-deterministic automaton is
computed, which, during the second phase, is turned into
a classical deterministic finite automaton. The authors do
not mention the application of minimization techniques to
the resulting automata. The automata that they generate
are typically larger than the ones that our algorithm
computes. The reason is that they do not attempt to
collapse equivalent states during generation.

An approach based on rewriting logic is presented in
[11]. The authors have implemented in Maude [12] (an
efficient rewriting logic system), rules that describe how
an LTL formula is transformed by a new state
encountered in the program, and how to decide, when the
end of a trace occurs, whether the specification was

satisfied or not. This approach is less efficient than
automata-based approaches, because it computes the
transformations on the LTL formula during the analysis.
Automata, on the other hand, are generated prior to
analysis, and encode how state changes are triggered by
inputs from program traces. Maude is, however, a
powerful prototyping tool; it allows to easily define
various types of logics. The authors have used it to also
support past-time logics, for example [4].

The Temporal Rover (TR) [13] is a commercial tool
for program monitoring based on temporal logic
specifications. TR allows users to specify future time
temporal formulae as comments in programs, which are
then translated into appropriate Java code before
compilation.

6 Conclusions

We presented an approach to generate deterministic

and minimal finite-state automata used to check running
programs against LTL specifications. The core of the
algorithm modifies standard LTL to Büchi automata
construction techniques. These techniques have been
polished for efficiency over years of research. It has
therefore been important for us to use these as a
foundation. Moreover, we have been able to exploit
standard algorithms for determinization and minimization
of the automata we generate.

This approach is clearly more efficient than using
Büchi automata for the same purpose. A benefit of our
approach is that it does not require the detection of cycles
in the product of the automaton with the program trace.
Rather, all that is needed in terms of storage is the current
state of the program, and the current state of the
automaton. There are, therefore, no scalability issues
involved. Additionally, we are able to generate minimal
deterministic automata. Büchi automata provide full
expressiveness only when they are non-deterministic.
Finding the optimal (or approximately optimal) sized
automaton for an LTL formula is PSPACE-hard [14].

An issue that occurs is whether LTL is the most
appropriate language for expressing properties of running
programs. LTL is a logic that has been widely used for
expressing properties of reactive systems. This is
particularly so in the domain of model checking. We
believe that runtime monitoring and model checking will
form components of extended debugging environments. It
is therefore crucial to allow users to specify properties
that are supported by both approaches.

From our experiments, the generation of observers is
very efficient. So is their behavior during runtime
analysis; specifications are checked in time linear in the
length of the program trace that is examined. The core of
our future research will therefore concentrate on how to
improve the interaction of the running program with the

observer so as to allow maximal independence between
the two, but minimal disruption to the running program.
7 References

[1] Visser, W., Havelund, K., Brat, G., and Park, S. "Model

Checking Programs", in Proc. of the 15th IEEE
International Conference on Automated Software
Engineering (ASE'2000). 11-15 September 2000, Grenoble,
France. IEEE Computer Society, pp. 3-11. Y. Ledru, P.
Alexander, and P. Flener, Eds.

[2] Holzmann, G.J. and Smith, M.H., Software model checking
- Extracting verification models from source code. Formal
Methods for Protocol Engineering and Distributed Systems,
Kluwer Academic Publishers, October 1999: pp. 481-497.

[3] Holzmann, G.J., The Model Checker SPIN. IEEE
Transactions on Software Engineering, Vol. 23(5), May
1997: pp. 279-295.

[4] Havelund, K. and Rosu, G. "Monitoring Java Programs
with Java PathExplorer", in Proc. of the First Workshop on
Runtime Verification (RV'01). 23 July 2001, Paris, France,
Electronic Notes in Theoretical Computer Science 55(2).

[5] Clarke, E.M., Grumberg, O., and Peled, S.A., Model
Checking: The MIT press, 1999.

[6] Giannakopoulou, D. and Havelund, K., “Automata-Based
Verification of Temporal Properties on Running Programs”,
RIACS, Technical Report 01.21.

[7] Gerth, R., Peled, D., Vardi, M.Y., and Wolper, P. "Simple
On-the-fly Automatic Verification of Linear Temporal
Logic", in Proc. of the 15th IFIP/WG6.1 Symposium on
Protocol Specification, Testing and Verification (PSTV'95).
June 1995, Warsaw, Poland, pp. 3-18.

[8] Hopcroft, J.E. and Ullman, J.D., Introduction to Automata
Theory, Languages, and Computation: Addison-Wesley,
1979.

[9] Cohen,S., http://www.compaq.com/java/download/jtrek.
[10] O'Malley, T.O., Richardson, D.J., and Dillon, L.K.

"Efficient Specification-Based Test Oracles", in Proc. of
the Second California Software Symposium (CSS'96). April
1996.

[11 Havelund, K. and Rosu, G., “Testing Linear Temporal
Logic Formulae on Finite Execution Traces”, RIACS
Technical Report TR 01-08, May 2001.

[12] Clavel, M., et al. "The Maude system", in Proc. of the 10th
International Conference on Rewriting Techniques and
Applications (RTA'99). July 1999, Trento, Italy. Springer-
Verlag, Lecture Notes in Computer Science 1631, pp. 240-
243.

[13] Drusinsky, D. "The Temporal Rover and the ATG Rover",
in Proc. of the 7th International SPIN Workshop on SPIN
Model Checking and Software Verification.
August/September 2000, Stanford, CA. Springer, Lecture
Notes in Computer Science 1885, pp. 323-330. K.
Havelund, J. Penix, and W. Visser, Eds.

[14] Etessami, K. and Holzmann, G. "Optimizing Buchi
automata", in Proc. of the 11th International Conference on
Concurrency Theory (CONCUR'2000). August 2000,
Pennsylvania, USA, LNCS (Lecture Notes in Computer
Science) 1877, pp. 153-167.

